Current public funded projects
Funding source: DFG / Graduiertenkolleg (GRK)
Project leader:
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
The vision is to use tiny Magnetic particles as carriers for anti cancer drugs. By magnetic fields we can steer these particles and guide them through the human vessel system towards a carcinoma. By that we want to contribute to the development of a new cancer therapy, with less unwanted side effects.
Funding source: BMBF / Verbundprojekt
Project leader: ,
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Dr. Eva Russwurm, M. Sc.
Head of Outreach (KI Park Satellite Erlangen)
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: , , ,
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
M. Sc. Sascha Breun, M. Sc.
Akademischer Rat und Gruppenleiter
This project targets research on a scalable THz communication system with a large number of elements towards a massive phased-array approach. Such a solution poses a variety of different challenges that need to be investigated and overcome. Some of these are:
1. Design of sufficiently broadband phased-array components to utilize the available large bandwidth around 300 GHz
2. Flexible and low loss broadband baseband signal distribution for many channels
3. Power-efficient generation…
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
Project leader:
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Funding source: BMBF / Verbundprojekt
Project leader: , , , , ,
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
M. Sc. Sascha Breun, M. Sc.
Akademischer Rat und Gruppenleiter
Miniaturized mechatronic and autonomous systems, such as automotive control units, electronic medical devices or wearables, integrate a large number of different functional submodules and require increasing networking, a compact form factor and decentralized signal processing, e.g. through artificial intelligence. This requires the co-integration of many monolithic integrated circuits in a highly complex package, taking into account thermal, electromagnetic and geometric boundary conditions, as well as global optimization of partitioning at the functional level.
The aim of the “PASSIONATE” research project is therefore to develop a free 3D design environment for packages and systems-in-package. The project thus complements other projects for the development of open-source tools for the design of integrated circuits by adding an environment for modeling spatial geometries and methods for simulating multiphysical, in particular thermal and electromagnetic properties. This closes a significant gap between open-source tools at chip level and open-source PCB software in order to cover the entire value chain with free tools. The basis of the new 3D design and simulation environment is a spatially oriented computer-aided design (3D-MCAD) system, which is extended by interfaces to the upstream chip design toolchain (system, logic and circuit development) and the import of geometries. Among other things, this enables feature-based, parametric modeling of various assembly and connection technologies.
The quality of the designed tool and the simulation techniques is validated by comparison with commercial software and finally by the realization of two physical demonstrators with a focus on high-frequency technology and digital system design.
Funding source: DFG / Graduiertenkolleg (GRK)
Project leader: , , , , , , , , ,
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
A new research training group at FAU is being funded by the German Research Foundation. The research training group entitled „Synthetic Molecular Communications Across Different Scales: From Theory to Experiments“, or SyMoCADS for short, is led by Prof. Robert Schober (as spokesperson) and Prof. Kathrin Castiglione (Chair of Bioprocess Engineering) as co-spokesperson.
This structured training program addresses the highly interdisciplinary field of molecular communication. Molecules are used as information carriers to communicate with objects, cells or organisms in environments that are not suitable for traditional communication systems based on electromagnetic waves. Three different work clusters involving researchers from the Departments of Electrical Engineering, Chemical and Bioengineering, Mechanical Engineering, Chemistry and Pharmacy and Biochemistry as well as the University Hospital are investigating the sensing and control of bioprocesses on a microliter scale, the control of magnetic nanoparticles in blood vessels and molecular communication via volatile odorous objects.
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: , ,
Magnetic Drug Targeting unter Einsatz von superparamagnetischen Eisenoxid-Nanopartikeln (SPIONs) ist eine wirksame Methode, um in der Krebstherapie die Wirkstoffapplikation im Tumorgewebe zu steigern, bei gleichzeitiger Reduktion der Gesamtwirkstoffmenge und der mit der Therapie einhergehenden Nebenwirkungen. Während die Wirksamkeit des Ansatzes bereits in Studien nachgewiesen werden konnte, fehlen allerdings bislang Ansätze, um diese Methode an den jeweiligen Behandlungsfall anzupassen und z…
Funding source: BMBF / Verbundprojekt
Project leader: , , ,
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
M. Sc. Sascha Breun, M. Sc.
Akademischer Rat und Gruppenleiter
MOTIVATION
Sixth-generationmobile communications (6G) will enable entirely new application scenarios inindustry, medical technology and everyday life. This will be accompanied by newand higher requirements for latency, the transmittable data rate, spatialresolution, as well as data processing and energy management of thecommunication systems, which cannot be met at present. A promisingtechnological solution is offered by the development of new radio frequenciesup to the terahertz …
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader: , , ,
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
Motivation
Today, quantum computers are considered to be the computing machines of the future. They use so-called qubits instead of the conventional bits of classical computer technology. The special properties of these qubits allow the quantum computer to assume all states that can be represented with the qubits simultaneously, while conventional computers can only work with one of the combinations that can be represented by the available bits per computing step. Quantum computers can thus…
Funding source: Bayerisches Staatsministerium für Wissenschaft und Kunst (StMWK) (seit 2018)
Project leader: , , , , , , ,
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
Quantum information processing (QIP), and generally the useof quantum technologies (QT) for communication, sensing, metrology andcomputational purposes, has become a key technology during the last decade forthe advancement of science and technology. The capability to prepare andmanipulate quantum states and to generate superpositions and entanglement ondemand has led to the development of measurement and computational procedures,which promise to perform well beyond classical tools. During the…
Already finished projects
Funding source: Bayerisches Staatsministerium für Wissenschaft und Kunst (StMWK) (seit 2018)
Project leader: , , , , , , , ,
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
Funding source: BMBF / Verbundprojekt
Project leader:
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Funding source: BMBF / Verbundprojekt
Project leader:
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Funding source: BMBF / Verbundprojekt
Project leader:
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Motivation
The increasing number of networked devices and sensors, the "Internet of Things" (IoT), enables diverse and new applications. However, it is also generating a rapidly growing volume of data. Processing data at its point of origin (edge computing) helps to deal with it efficiently. Edge computing strengthens the functionality, sustainability, trustworthiness and cost-effectiveness of electronic applications through the use of artificial intelligence and networking. The goal of…
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
Project leader: , , ,
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
M. Sc. Sascha Breun, M. Sc.
Akademischer Rat und Gruppenleiter
Funding source: DFG / Schwerpunktprogramm (SPP)
Project leader: , ,
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
M. Sc. Sascha Breun, M. Sc.
Akademischer Rat und Gruppenleiter
This proposal aims to explore a scalable, two-stage electronic-photonic MIMO radar system in the millimeter-wave range. In phase I of SPP 2111, the coherent optical distribution of the local oscillator signal was already addressed as well as the broadband integration of an electronic-photonic FMCW radar front-end. The vision for Phase II of SPP 2111 is the extension of a monolithically integrated electronic-photonic FMCW radar system by a new frequency-division multiplexing approach, which is realized…
Funding source: BMBF / Verbundprojekt
Project leader: , , , ,
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
M. Sc. Sascha Breun, M. Sc.
Akademischer Rat und Gruppenleiter
MOTIVATION
The increasing number of networked devices and sensors, the "Internet of Things" (IoT), enables diverse and new applications. However, it also ensures a rapidly growing amount of data. Processing data at its point of origin (edge computing) helps to deal with it efficiently. Edge computing strengthens the functionality, sustainability, trustworthiness and cost-effectiveness of electronic applications through the use of artificial intelligence and networking. The goal of the OCTOPUS…
Funding source: BMBF / Verbundprojekt
Project leader:
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Funding source: Bundesministerium des Inneren (BMI)
Project leader:
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Funding source: DFG / Schwerpunktprogramm (SPP)
Project leader:
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
TIEMPO proposes the realization of an I/Q transceiver chipset for spread-spectrum digital noise radar operating in the frequency range from 220 GHz to 420 GHz. This corresponds to a record bandwidth of 200 GHz. In this project we innovate on the idea of the frequency modulated continuous wave (FMCW) comb radar, by proposing a concept that can be viewed as a digital radar counterpart to a frequency comb radar. To achieve the extremely wide bandwidth we propose a novel system architecture implementing…
Funding source: BMBF / Verbundprojekt
Project leader: ,
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Funding source: BMBF / Verbundprojekt
Project leader: ,
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader: , ,
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
The Open6GHub will contribute to the development of an overall 6G architecture, but also end-to-end solutions in the following, but not limited to, areas: advanced network topologies with highly agile organic networking, security and resilience, THz and photonic transmission methods, sensor functionalities in the network and their intelligent use, as well as processing and application-specific radio protocols.
Research at FAU is conducted at the chairs of Prof. Franchi (ESCS), Prof. Weigel (LTE) and Prof. Vossiek (LHFT). At LTE research is focused on Joint-Communications-and-Sensing-Technologies and their application in resilient 6G campus networks, in close collaboration with ESCS and LHFT. Furthermore LTE designs integrated 140 GHz Device-to-Device communication chips.
The head of the ESCS Chair, Professor Franchi is the FAU project leader of the work package focusing on adaptive RAN technologies. His working group aims to bring together technologies and functions for 6G. radio (air interface) and sensing, JCAS, and to explore new architectures, methods, and protocols for highly reliable real-time industrial radio solutions (6G industrial radio) as well as private and local networks (6G campus networks).Additionally, ESCS is involved in investigations on topics of resilience-by-design and security-by-design.
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader:
Prof. Dr. Norman Franchi
Lehrstuhlinhaber
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
Project leader:
This project aims to create and investigate system architectures for machine learning, dealing with several stages from embedded sensor nodes till cloud applications and in between. Their combination introduces great diversity considering energy consumption, computational performance, integration level and form factor, where workload and complexity need to be distributed through system in an optimized manner.
For demonstration, modern mmWave radar sensors are used in combination with machine learning algorithms for person presence detection and to do scans of the environment in autonomous driving situations. Investigations focus modularity, flexibility, scalability and reusability of the system.
Funding source: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
Project leader: ,
The CRC 1483 “Empatho-Kinaesthetic Sensor Technology” (EmpkinS) investigates novel radar, wireless, depth camera, and photonics-based sensor technologies as well as body function models and algorithms. The primary objective of EmpkinS is to capture human motion parameters remotely with wave-based sensors to enable the identification and analysis of physiological and behavioural states and body functions. To this end, EmpkinS aims to develop sensor technologies and facilitate the collection of motion data for the human body. Based on this data of hitherto unknown quantity and quality, EmpkinS will lead to unprecedented new insights regarding biomechanical, medical, and psychophysiological body function models and mechanisms of action as well as their interdependencies.
Funding source: DFG / Sonderforschungsbereich (SFB)
Project leader:
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
In this subproject, localisable electromyography (EMG) radio
transponders are to be designed and realised in order to be able to
record surface EMG data synchronously with highly accurate radio
localisation in real time for the first time. For this purpose, a 61-GHz
transceiver in CMOS technology is being designed, which emits the
phase-coherent signal required for the holographic radiolocation method
and at the same time must be designed to be extremely energy-saving. In a
further step, the transceiver is to be integrated into an EMG sensor
platform, which is to be evaluated in test series on subjects, e.g. on
the face or legs, to analyse facial expressions or gait.
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: ,
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
Project leader: ,
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Der von der bayerischen Staatsregierung forcierte Breitbandausbau der bestehenden Mobilfunknetze, aber auch der geplante Aufbau ganz neuer Netzinfrastrukturen, wie sie im Rahmen des autonomen Fahrens und der fortschreitenden Industrieautomation (Industrie 4.0) benötigt werden, wird in Zukunft zwangsläufig zu einer immer dichteren Nutzung des verfügbaren Frequenzspektrums sowie zur Reallokation zusätzlicher
Frequenzressourcen (Beispiel Digitale Dividende I und II) führen. Um die, für die 5G Ne…
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader:
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
Funding source: DFG / Graduiertenkolleg (GRK)
Project leader:
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Energy supply of wearable electronics and body-near sensors by energy harvesting from movement and photovoltaics.
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
Project leader:
Funding source: Bundesministerium für Wirtschaft und Energie (BMWE)
Project leader:
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
Passive radar technology represents a promising addition to conventional radar systems. With increasing demands from economy and politics to completely use the limited spectrum of the frequency bands limited for telecommunications and location, the interest in this technology is increasing.
The aim of this research project is to establish the technology of location using passive radar technology in civil air traffic control in Germany and to open new areas of application.
To improve the detection performance, various options for setting up a frequency-selective analog receiver for the FM band are being developed and integrated into an existing passive radar system. For the highest possible sensitivity, filtering in different stages of the receiver is essential. However, this must be evaluated together with the frequency-converting stages in the overall system context in order not to degrade the signal quality, including through possible imperfections in the analog implementation. Furthermore, attention must also be paid to an optimal balance between circuit complexity, costs and compactness of the receiver. For this purpose, the receiver architectures are first examined in system simulations and evaluated regarding the requirements from the application. This is followed by a prototype construction of the most promising concepts with metrological verification of the individual components and evaluation of the entire system in a field test.
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader:
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
The fundamental goal of the ANDANTE project is to leverage innovative hardware platforms to build strong hardware / software platforms for artificial neural networks (ANN) and spiking neural networks (SNN) as a basis for future products in the Edge IoT domain, combining extreme power efficiency with robust neuromorphic computing capabilities and demonstrate them in key application areas.
The main objective of ANDANTE is to build and expand the European eco-system around the definition,…
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
Project leader: ,
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Peil-Systeme zurIdentifikation von Funksignale und damit zur Identifikation von unbekanntenFunkquellen sind ein wichtiges Instrument in der Aufklärung und der Ortungelektromagnetischer Aussendungen.
Derrechentechnische Aufwand, der in modernen, hochqualitativen Peilanlagenabgedeckt werden muss, ist generell sehr hoch und erfordert eine entsprechendleistungsfähige und aufwändige Infrastruktur (Rechnerressourcen, Netzwerk,Stromversorgung, Kühlung, Systemintegration). Dies spielt bei stationären Syst…
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
Project leader:
Funding source: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013)
Project leader: ,
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
The research project 5G Connected Sport started back in September 2019 and was funded by the Bavarian Ministry of Economic Affairs, Regional Development and Energy. The Institute for Electronics Engineering (LTE) represents FAU in the consortium alongside partners Adidas, Megatec and UKR.
5G Connected Sport has the mission to create a phoneless experience for athletes through smart wearable products using LPWAN (NB-IoT & LTE-M) mobile technologies. Our target is to provide emergency, sports performance tracking and injury prevention solutions for athletes without using an additional smartphone.
As part of the project, the Institute for Electronics Engineering (LTE) researched the cellular IoT standards NB-IoT & LTE-M with respect to energy efficiency. Energy-saving features were gradually implemented in prototypes to make the energy consumption of a smart jacket and smart shoe more efficient.
Project leader:
In people with chronic diseases, sensors are increasingly being used in or on the body to monitor the patient's state of health and detect deterioration at an early stage. Which data are collected in this context is initially a medical-technical question. However, with the increasing prevalence of mobile data collection in everyday life and the usability of this data by different interest groups, it is clear that this is also an ethical question about data sovereignty. Therefore, it will be investigated…
Funding source: Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst (ab 10/2013)
Project leader:
Dr. Eva Russwurm, M. Sc.
Head of Outreach (KI Park Satellite Erlangen)
Ziel des Forschungsprojekts ist es, auf Basis multipler Sensordaten ein intelligentes System zu entwickeln, das eine direkte Kommunikation im Wertstrom, also im Bereich der Produktion und Logistik, ermöglicht. Das zu entwickelnde System basiert auf der Verknüpfung von werkstückbezogenen Daten und der kontinuierlichen Kontrolle von Produktions- und Logistikprozessen. Durch eine künstliche Intelligenz soll das System den Großteil dieser Prozesse autark steuern. Zur Vereinfachung komplexer, von …
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader:
M. Sc. Albert-Marcel Schrotz, M.Sc.
Akademischer Rat und Gruppenleiter
The ever-increasing number of agile Internet users and the concomitant growth in data volumes, driven in particular by the use of mobile Internet, video and cloud streaming services ("streaming on demand"), are already causing bandwidth bottlenecks in existing data and mobile communication systems. The MassiveData6G project aims to address the emerging bandwidth constraints in infrastructure to provide at least 100 Gbps per mobile user in the future. The required low-power and low-cost 140 GHz t…
Funding source: Deutsche Forschungsgemeinschaft (DFG)
Project leader:
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: ,
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
Alternating-Contactthin-film transistors (ACTFTs) provide new degrees of freedom for deviceoptimization and deployment. This project specifically aims at providingcost-effective implementation of flexible RF circuits through the use of shortchannel ACTFTs with self-aligned contacts. With the Chair of Electron Devicesand the Institute of Electronics Engineering of the FAU Erlangen-Nuremberg, tworenowned institutes of semiconductor electronics and RF circuit technology workhand in hand on…
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader:
Millimeter-wave radars are insensitive to the environment and, because of that, essential in automatic imaging like gesture recognition. Unlike the usual frequency-modulated continuous-wave (FMCW) waveform, phase-modulated continuous-wave (PMCW) radars use binary phase-shift keying (BPSK) modulated signals that are digitally processed in the receiver. However, as their range resolution depends on the bandwidth, higher frequency bands must be used for the desired application. In the REGGAE project,…
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader: ,
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Efficient Implementation of Massive MIMO Systems
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader:
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader:
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
Funding source: Bundesministerium für Wirtschaft und Energie (BMWE)
Project leader:
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader:
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader:
Funding source: Europäische Union (EU)
Project leader:
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
Funding source: Bundesministerium für Wirtschaft und Energie (BMWE)
Project leader:
Funding source: Fraunhofer-Gesellschaft
Project leader:
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Funding source: Industrie
Project leader: ,
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Funding source: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013)
Project leader:
Funding source: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013)
Project leader:
Funding source: Industrie
Project leader: ,
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader:
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Funding source: Industrie
Project leader:
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader:
Funding source: BMBF / Verbundprojekt
Project leader: ,
Motivation
In the care of seriously ill people, the recording of breathing and heartbeat is an important tool for crisis detection. The recording via electrodes and cables that has been necessary up to now is prone to interference and restricts the self-determination and quality of life of those in need of care. The GUARDIAN project aims to enable the contactless and continuous recording of vital parameters.
Goal and strategy
In GUARDIAN, the contactless recording of vital parameters from a distance of several meters using a multimodal high-frequency sensor is being developed. For this purpose, a weak electromagnetic high-frequency signal is emitted and its change is analyzed. Due to the high distance resolution, movements causing respiration and heartbeat can be extracted from the measurement signal and analyzed. In the process, superimposed motion artifacts must be compensated for. GUARDIAN will thus make it possible to detect complaints such as pain and shortness of breath as well as health crises such as cardiac arrhythmias and cardiovascular arrest immediately and automatically. At the same time, the ethical, legal and social issues of the procedure as well as its effects on palliative and intensive care, people in need of care, care professionals and relatives will be intensively investigated.
Innovation and perspective
By using six-port interferometry as a new concept, all body movements can be recorded contactlessly from a distance of up to several meters with a previously unattainable distance resolution in the micrometer range, and respiration and heartbeat can be extracted. The consortium partners see great potential in the technology to be developed for monitoring the health and complaints of people in need of care in hospitals, but also in the outpatient sector in nursing homes and at home.
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader:
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Project leader:
Project leader:
Neuentstehende Anwendungen in der Biologie, Nanotechnologie und Medizin machen die Vernetzung von Objekten und Maschinen mit Abmessungen im Nano- und Mikrometerbereich erforderlich. Traditionelle elektromagnetische Ansätze für den Entwurf entsprechender Kommunikationssysteme sind für solch kleine Größenordnungen nicht geeignet. In der Natur jedoch ist die Kommunikation zwischen Nano- und Mikro-Objekten, wie z.B. Bakterien und anderen Zellen, weit verbreitet. Dabei kommen oft Signalmoleküle als I…
Funding source: Innovative Training Networks (ITN)
Project leader:
Funding source: Siemens AG
Project leader: ,
Dr. Eva Russwurm, M. Sc.
Head of Outreach (KI Park Satellite Erlangen)
Funding source: DFG / Schwerpunktprogramm (SPP)
Project leader: ,
Prof. Dr.-Ing. Dr.-Ing. habil. Robert Weigel
Professor im Ruhestand
Thin-film transistors (TFTs) are mainly used in flat panel displays as switches for selecting pixels. In TFTs the electric conductivity of a semiconductor layer placed between two contacts, called source and drain, is influenced by a third contact, the gate. The current can thus be varied over several orders of magnitude. The TFT is switched off when the current flow is negligibly small (for example a few pikoampere) and switched on when the current is much larger (for example, several microampers). Switching over always takes some time (fractions of seconds). If source and drain are closer together (the so-called channel is smaller), this time is reduced and the TFT switches faster. In state of the art thin-film-transistors (TFTs), both source and drain electrodes are placed at the same side or interface of the semiconductor layer. Positioning the two contacts on opposite interfaces of the semiconductor in an Alternating Contact TFT (ACTFT) enables new degrees of freedom for device design, optimization, and operation. The ability to enable short channel lengths is explored for application in radio frequency (RF) circuitry in this project.Two research groups of FAU Erlangen Nuremberg being experts in device technology (Chair of Electron Devices) and RF circuits engineering (Institute of Electronics Engineering) join forces to cover the integrated development of ACTFTs towards basic RF building blocks and systems based on flexible metal oxide TFTs. Studies on device physics, RF behavior, and novel circuit concepts will open perspectives for the use of large area, thin, and bendable TFT technologies in future industrial, consumer, and wearable electronics.
Funding source: Industrie
Project leader:
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Funding source: Bundesministerien
Project leader: ,
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Funding source: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013)
Project leader:
Funding source: BMBF / Verbundprojekt
Project leader:
Funding source: Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Technologie (StMWIVT) (ab 10/2013)
Project leader:
Funding source: Industrie
Project leader: ,
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Funding source: Industrie
Project leader:
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Funding source: Industrie
Project leader:
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Funding source: DFG / Graduiertenkolleg (GRK)
Project leader:
Systeme zur Verarbeitung, Erzeugung und übertragung digitaler Bilder (Bildsysteme) unterliegen sehr oft harten Anforderungen an Rechenleistung, Latenz, Durchsatz und Kosten. Typische Beispiele sind die medi-zinische Bildverarbeitung, Computerspiele oder die Videokompression in Camcordern. Um diese Anforde-rungen zu erfüllen, werden oft dedizierte Hardware-Beschleuniger eingesetzt als auch Grafikprozessoren (GPUs) oder digitale Signalprozessoren (DSPs). Die entstehenden Bildsysteme sind in zweierlei H…
Funding source: DFG / Forschungsgruppe (FOR)
Project leader:
Funding source: DFG / Forschungsgruppe (FOR)
Project leader: ,
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Funding source: DFG / Forschungsgruppe (FOR)
Project leader:
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Um den ganzheitlichen Modellierungs‐ und Simulationsansatz der Forschergruppe MUSIK auf allen Systemebenen zu gewährleisten, werden in Teilprojekt 4 die Auswirkungen nichtlinearer Eigenschaften von MEMS‐Bauelementen auf die Leistungsmerkmale eines HF‐übertragungssystems untersucht. Dabei gilt es nicht nur, schwer erkennbare Ursachen parasitärer Einflüsse auf die Gesamtschaltung zu beseitigen; vielmehr kann das Potential für die gezielte Nutzung nichtlinearer Effekte über die Grenzen des einzeln…
Funding source: Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR)
Project leader:
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
Das Vorhaben MAS erforscht nano-elektronische Komponenten und Systeme für AAL-Anwendungen (Gesundheit/Wellness/Patienten-Monitoring). Hauptziele: Realisierung geschlossener Sensor Service Kommunikationsketten (AAL-Wertschöpfungskette) sowie die Erforschung und Umsetzung einer AAL-Technologie-Plattform. Anwendungs-orientierten Demonstratoren (Referenz-Applikationen) werden realisiert und im medizinischen Umfeld (Telemedizin/Health Service Provider) erprobt. Teilziele: Spezifikation von UseCases un…
Funding source: Sonstige EU-Programme (z. B. RFCS, DG Health, IMI, Artemis), Industrie, Bundesministerien
Project leader:
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
The objective of MAS is to develop a common communication platform and nanoelectronics circuits for health and wellness applications to support the development of flexible, robust, safe and inexpensive mobile AAL systems, to improve the quality of human life and improve the well-being of people. In this context, reference architectures will be defined in order to enable system development from devices to complete mobile AAL systems, and to enable cooperative clusters of such systems for specific…
Funding source: BMBF / Spitzencluster
Project leader: , ,
Prof. Dr.-Ing. Georg Fischer
Stellvertretende Lehrstuhlleitung
In the "Smart Sensors B" research project, work is being done within the framework of the Medical Valley Leading Edge Cluster on a high-frequency-based sensor node for non-invasive measurement of blood parameters. The electrical properties undergo a characteristic change depending on the concentration. These changes can be detected by non-invasive means using integrated high-frequency circuits, whereby costs are getting lower and lower all the time. In future, this could enable portable, …









